1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
//! A double-ended queue implemented with two vector.
//!
//! This queue has *O*(1) amortized inserts to both ends of the
//! container. When operations on the queue only involves removal from **single**
//! end, the removals are amortized *O*(1). It also has *O*(1) indexing like
//! a vector. The contained elements are not required to be copyable, and the
//! queue will be sendable if the contained type is sendable.

use crate::wrapper::{r2a, vec_push, vec_shrink_to_fit};
use alloc::vec::Vec;
use core::{
    alloc::AllocError,
    cmp::min,
    mem::swap,
    ops::{Index, IndexMut},
};

/// A double-ended queue implemented with two vector.
///
/// The "default" usage of this type as a queue is to use [`push_back`] or [`push_front`] to
/// add to the back or front of the queue, and [`pop_front`] or [`pop_back`] to remove from
/// the front or back of the queue.
///
/// Since `Vecque` is simulated by two vector(stack), its elements are not necessarily
/// contiguous in memory.
///
/// [`push_back`]: Vecque::push_back
/// [`push_front`]: Vecque::push_front
/// [`pop_front`]: Vecque::pop_front
/// [`pop_back`]: Vecque::pop_back
pub struct Vecque<T> {
    back: Vec<T>,
    front: Vec<T>,
}

impl<T> Vecque<T> {
    /// Creates an empty `Vecque`.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let vector: Vecque<u32> = Vecque::new();
    /// ```
    pub const fn new() -> Self {
        Self {
            back: Vec::new(),
            front: Vec::new(),
        }
    }

    /// Reserves capacity for at least `additional` more elements to be inserted in the given
    /// `Vecque`. The collection may reserve more space to avoid frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut buf = Vecque::new();
    /// buf.push_back(1);
    /// buf.reserve(10);
    /// assert!(buf.capacity() >= 11);
    /// ```
    pub fn reserve(&mut self, additional: usize) -> Result<(), AllocError> {
        r2a(self.front.try_reserve(additional))?;
        r2a(self.back.try_reserve(additional))?;
        Ok(())
    }

    /// Creates an empty `Vecque` with space for at least `capacity` elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let vector: Vecque<u32> = Vecque::with_capacity(10).unwrap();
    /// ```
    pub fn with_capacity(capacity: usize) -> Result<Self, AllocError> {
        // +1 since the ringbuffer always leaves one space empty
        let mut ret = Self {
            back: Vec::new(),
            front: Vec::new(),
        };
        ret.reserve(capacity)?;
        Ok(ret)
    }

    /// Provides a reference to the element at the given index.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut buf = Vecque::new();
    /// buf.push_back(3);
    /// buf.push_back(4);
    /// buf.push_back(5);
    /// assert_eq!(buf.get(1), Some(&4));
    /// ```
    pub fn get(&self, index: usize) -> Option<&T> {
        let front_len = self.front.len();
        if index < front_len {
            self.front.get(front_len - 1 - index)
        } else {
            self.back.get(index - front_len)
        }
    }

    /// Provides a mutable reference to the element at the given index.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut buf = Vecque::new();
    /// buf.push_back(3).unwrap();
    /// buf.push_back(4).unwrap();
    /// buf.push_back(5).unwrap();
    /// if let Some(elem) = buf.get_mut(1) {
    ///     *elem = 7;
    /// }
    ///
    /// assert_eq!(buf[1], 7);
    /// ```
    pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
        let front_len = self.front.len();
        if index < front_len {
            self.front.get_mut(front_len - 1 - index)
        } else {
            self.back.get_mut(index - front_len)
        }
    }

    /// Provides a reference to the front element, or `None` if the `Vecque` is
    /// empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut d = Vecque::new();
    /// assert_eq!(d.front(), None);
    ///
    /// d.push_back(1);
    /// d.push_back(2);
    /// assert_eq!(d.front(), Some(&1));
    /// ```
    pub fn front(&self) -> Option<&T> {
        self.get(0)
    }

    /// Provides a mutable reference to the front element, or `None` if the
    /// `Vecque` is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut d = Vecque::new();
    /// assert_eq!(d.front_mut(), None);
    ///
    /// d.push_back(1);
    /// d.push_back(2);
    /// match d.front_mut() {
    ///     Some(x) => *x = 9,
    ///     None => (),
    /// }
    /// assert_eq!(d.front(), Some(&9));
    /// ```
    pub fn front_mut(&mut self) -> Option<&mut T> {
        self.get_mut(0)
    }

    /// Provides a reference to the back element, or `None` if the `Vecque` is
    /// empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut d = Vecque::new();
    /// assert_eq!(d.back(), None);
    ///
    /// d.push_back(1);
    /// d.push_back(2);
    /// assert_eq!(d.back(), Some(&2));
    /// ```
    pub fn back(&self) -> Option<&T> {
        self.get(self.len().wrapping_sub(1))
    }

    /// Provides a mutable reference to the back element, or `None` if the
    /// `Vecque` is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut d = Vecque::new();
    /// assert_eq!(d.back(), None);
    ///
    /// d.push_back(1);
    /// d.push_back(2);
    /// match d.back_mut() {
    ///     Some(x) => *x = 9,
    ///     None => (),
    /// }
    /// assert_eq!(d.back(), Some(&9));
    /// ```
    pub fn back_mut(&mut self) -> Option<&mut T> {
        self.get_mut(self.len().wrapping_sub(1))
    }

    /// Removes the first element and returns it, or `None` if the `Vecque` is
    /// empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut d = Vecque::new();
    /// d.push_back(1);
    /// d.push_back(2);
    ///
    /// assert_eq!(d.pop_front(), Some(1));
    /// assert_eq!(d.pop_front(), Some(2));
    /// assert_eq!(d.pop_front(), None);
    /// ```
    pub fn pop_front(&mut self) -> Option<T> {
        if self.front.is_empty() {
            self.back.reverse();
            swap(&mut self.back, &mut self.front);
        }
        self.front.pop()
    }

    /// Removes the last element from the `Vecque` and returns it, or `None` if
    /// it is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut buf = Vecque::new();
    /// assert_eq!(buf.pop_back(), None);
    /// buf.push_back(1);
    /// buf.push_back(3);
    /// assert_eq!(buf.pop_back(), Some(3));
    /// ```
    pub fn pop_back(&mut self) -> Option<T> {
        if self.back.is_empty() {
            self.front.reverse();
            swap(&mut self.back, &mut self.front);
        }
        self.back.pop()
    }

    /// Prepends an element to the `Vecque`.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut d = Vecque::new();
    /// d.push_front(1).unwrap();
    /// d.push_front(2).unwrap();
    /// assert_eq!(d.front(), Some(&2));
    /// ```
    pub fn push_front(&mut self, value: T) -> Result<(), AllocError> {
        vec_push(&mut self.front, value)
    }

    /// Appends an element to the back of the `Vecque`.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut buf = Vecque::new();
    /// buf.push_back(1).unwrap();
    /// buf.push_back(3).unwrap();
    /// assert_eq!(3, *buf.back().unwrap());
    /// ```
    pub fn push_back(&mut self, value: T) -> Result<(), AllocError> {
        vec_push(&mut self.back, value)
    }

    /// Returns the number of elements in the `Vecque`.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut v = Vecque::new();
    /// assert_eq!(v.len(), 0);
    /// v.push_back(1);
    /// assert_eq!(v.len(), 1);
    /// ```   
    pub fn len(&self) -> usize {
        self.front.len() + self.back.len()
    }

    /// Returns `true` if the `Vecque` is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut v = Vecque::new();
    /// assert!(v.is_empty());
    /// v.push_front(1);
    /// assert!(!v.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Shrinks the capacity of the `Vecque` as much as possible.
    ///
    /// It will drop down as close as possible to the length but the allocator may still inform the
    /// `Vecque` that there is space for a few more elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let mut buf = Vecque::with_capacity(15).unwrap();
    /// buf.push_front(1).unwrap();
    /// assert_eq!(buf.capacity(), 15);
    /// buf.shrink_to_fit().unwrap();
    /// assert!(buf.capacity() >= 1);
    /// ```
    pub fn shrink_to_fit(&mut self) -> Result<(), AllocError> {
        vec_shrink_to_fit(&mut self.back)?;
        vec_shrink_to_fit(&mut self.front)
    }

    /// Returns the number of elements the `VecDeque` can hold without
    /// reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// use kalloc::vecque::Vecque;
    ///
    /// let buf: Vecque<i32> = Vecque::with_capacity(10).unwrap();
    /// assert!(buf.capacity() >= 10);
    /// ```
    pub fn capacity(&self) -> usize {
        let d1 = self.front.capacity() - self.front.len();
        let d2 = self.back.capacity() - self.back.len();
        self.len() + min(d1, d2)
    }
}

impl<T> Default for Vecque<T> {
    /// Creates an empty `VecDeque<T>`.
    #[inline]
    fn default() -> Vecque<T> {
        Vecque::new()
    }
}

impl<T> Index<usize> for Vecque<T> {
    type Output = T;

    #[inline]
    fn index(&self, index: usize) -> &T {
        self.get(index).expect("Out of bounds access")
    }
}

impl<T> IndexMut<usize> for Vecque<T> {
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut T {
        self.get_mut(index).expect("Out of bounds access")
    }
}